Differentially Private Filtering
نویسندگان
چکیده
منابع مشابه
Differentially Private Local Electricity Markets
Privacy-preserving electricity markets have a key role in steering customers towards participation in local electricity markets by guarantying to protect their sensitive information. Moreover, these markets make it possible to statically release and share the market outputs for social good. This paper aims to design a market for local energy communities by implementing Differential Privacy (DP)...
متن کاملTwo-Stage Architecture Optimization for Differentially Private Kalman Filtering
The problem of Kalman filtering under a differential privacy constraint is considered in this paper. This problem arises in scenarios where an aggregate statistic must be published in real-time based on privacy-sensitive input signals, which can be assumed to originate from a linear Gaussian model. We propose an architecture combining the differentially private Gaussian mechanism with a linear ...
متن کاملDifferentially Private Variational Dropout
Deep neural networks with their large number of parameters are highly flexible learning systems. The high flexibility in such networks brings with some serious problems such as overfitting, and regularization is used to address this problem. A currently popular and effective regularization technique for controlling the overfitting is dropout. Often, large data collections required for neural ne...
متن کاملDifferentially Private Rank Aggregation
Given a collection of rankings of a set of items, rank aggregation seeks to compute a ranking that can serve as a single best representative of the collection. Rank aggregation is a well-studied problem and a number of effective algorithmic solutions have been proposed in the literature. However, when individuals are asked to contribute a ranking, they may be concerned that their personal prefe...
متن کاملDifferentially Private Policy Evaluation
We present the first differentially private algorithms for reinforcement learning, which apply to the task of evaluating a fixed policy. We establish two approaches for achieving differential privacy, provide a theoretical analysis of the privacy and utility of the two algorithms, and show promising results on simple empirical examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2014
ISSN: 0018-9286,1558-2523
DOI: 10.1109/tac.2013.2283096